R2GUESS: A Graphics Processing Unit-BasedRPackage for Bayesian Variable Selection Regression of Multivariate Responses
نویسندگان
چکیده
منابع مشابه
Bayesian variable selection for multivariate spatially varying coefficient regression.
Physical activity has many well-documented health benefits for cardiovascular fitness and weight control. For pregnant women, the American College of Obstetricians and Gynecologists currently recommends 30 minutes of moderate exercise on most, if not all, days; however, very few pregnant women achieve this level of activity. Traditionally, studies have focused on examining individual or interpe...
متن کاملVariable Selection for Multivariate Logistic Regression Models
In this paper, we use multivariate logistic regression models to incorporate correlation among binary response data. Our objective is to develop a variable subset selection procedure to identify important covariates in predicting correlated binary responses using a Bayesian approach. In order to incorporate available prior information, we propose a class of informative prior distributions on th...
متن کاملMultivariate Bayesian variable selection and prediction
The multivariate regression model is considered with p regressors. A latent vector with p binary entries serves to identify one of two types of regression coef®cients: those close to 0 and those not. Specializing our general distributional setting to the linear model with Gaussian errors and using natural conjugate prior distributions, we derive the marginal posterior distribution of the binary...
متن کاملBayesian Rank Selection in Multivariate Regression
Estimating the rank of the coefficient matrix is a major challenge in multivariate regression, including vector autoregression (VAR). In this paper, we develop a novel fully Bayesian approach that allows for rank estimation. The key to our approach is reparameterizing the coefficient matrix using its singular value decomposition and conducting Bayesian inference on the decomposed parameters. By...
متن کاملEfficient Bayesian multi-source localization using a graphics processing unit
This paper presents a highly-efficient approach to matched-field localization of an unknown number of ocean acoustic sources employing a graphics processing unit (GPU) for massively parallel computations. A Bayesian formulation is developed in which the number, locations, and complex spectra (amplitudes and phases) of multiple sources, as well as noise variance at each frequency, are considered...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Statistical Software
سال: 2016
ISSN: 1548-7660
DOI: 10.18637/jss.v069.i02